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Abstract. The decays π0, η, η′ → γγ are investigated up to next-to-next-to-leading order in the framework of
the combined 1/Nc and chiral expansions. Without mixing of the pseudoscalar mesons the Nc independence
of the π0 and η decay amplitudes is shown to persist at the one-loop level, although the contribution of
the Wess–Zumino–Witten term to the pertinent vertices is not canceled by the Nc dependent part of a
Goldstone–Wilczek term. The decay amplitude of the singlet field, on the other hand, depends strongly
on Nc and yields under the inclusion of mixing also a strong Nc dependence for the η decay. Both the η
and η′ decay are suited to confirm the number of colors to be Nc = 3.

1 Introduction

Experimental evidence suggests that we live in a world
with three colors. At high energies the Drell ratio for e+e−
annihilation supports Nc = 3, while in the low-energy
regime below 1 GeV the anomalous decay of the π0 into
two photons, π0 → γγ, is presented as a textbook example
to confirm the number of colors; see e.g. [1]. The quark
charges are assumed to be independent ofNc yielding at tree
level a width Γπ0→γγ proportional to N2

c , thus being quite
sensitive to the number of colors. However, it was shown
recently in [2] that the cancellation of triangle anomalies in
the standardmodelwith an arbitrary number of colors leads
toNc dependent values of the quark charges. For three light
flavors (u, d, s) Nc enters as a quantized prefactor of the
Wess–Zumino–Witten (WZW) term [3, 4], but the vertex
with one pion and two photons is completely canceled by
the Nc dependent part of a Goldstone–Wilczek term [2,5].
A similar cancellation also occurs for the decay η → γγ, if
one neglects η–η′ mixing.

On the other hand, the quark triangle diagram of the
microscopic theory describing the decay η0 → γγ of the
flavor singlet isNc dependent and hence due to η–η′ mixing
the decay width of the η will also pick up an Nc dependent
portion. If one works with different up- and down-quark
masses, mu �= md, the π0 will also undergo mixing with
the η–η′ system and its decay width into two photons will
have an – albeit small – Nc dependent piece.

Loop diagrams which have not been discussed in [2]
can be another source ofNc dependence for the two-photon
decays. As we will see, the vertices of the one-loop diagrams
contain indeed an Nc dependent piece that does not cancel
out in the sum of the WZW and Goldstone–Wilczek terms.

In order to investigate systematically the effects of mix-
ing and loops for the two-photon decays of π0, η and η′,

a e-mail: borasoy@ph.tum.de

we include the η′ explicitly within the combined frame-
work of chiral perturbation theory (ChPT) and the 1/Nc
expansion, so-called large Nc ChPT [6–8].1 In this theory,
the η0 is combined with the octet of pseudoscalar mesons
(π,K, η8), since in the largeNc limit the axialU(1) anomaly
vanishes and the η′ is converted into a Goldstone boson.
In the present work, we evaluate the decay amplitudes of
π0, η and η′ up to next-to-next-to-leading order at which
loops start contributing in large Nc ChPT.

This paper is organized as follows. In the next section,
we discuss the WZW term under the inclusion of the η′.
We will see that it can be decomposed into the conven-
tional SU(3) WZW Lagrangian, the Goldstone–Wilczek
term and counterterms of unnatural parity. In Sect. 3 the
calculation for the decays up to next-to-next-to-leading or-
der is presented. Numerical results and the importance of
Nc dependent contributions are discussed in Sect. 4. Sec-
tion 5 contains our conclusions, and the scaling behavior of
the coupling constants under changes of the QCD running
scale is presented in Appendix A.

2 Wess–Zumino–Witten term

In this section we will first briefly outline the method of
extending theSU(3)R×SU(3)L chiral rotations of the effec-
tive Lagrangian in conventional ChPT to U(3)R×U(3)L in
a more generalized framework including the η′ [6,8]. Within
this approach the topological charge operator coupled to
an external field θ is added to the QCD Lagrangian

L = LQCD − g2

16π2 θ(x)trc
(
GµνG̃

µν
)
, (1)

1 For an alternative approach to include the η′ without em-
ploying large Nc counting rules, see, e.g., [9].
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withGµν the gluonic field strength tensor, G̃µν = εµναβG
αβ

its dual counterpart, and trc is the trace over the color in-
dices. Under U(1)R ×U(1)L the axial U(1) anomaly adds
a term − g2

16π2Nf (αR − αL)trc(GµνG̃µν) to the QCD La-
grangian, with Nf being the number of different quark
flavors and αR/L the angle of the U(1)R/L rotation. The
vacuum angle θ(x) is in this context treated as an exter-
nal pseudoscalar source that transforms under axial U(1)
rotations as

θ(x) → θ′(x) = θ(x) + i ln detR− ln det L, (2)

with R,L ∈ U(1), so that the term in the anomaly pro-
portional to the topological charge operator of the glu-
ons is compensated by the shift in the θ field. There are,
however, further axial anomalies which are accounted for
within the effective theory by the WZW term. The dy-
namical variables of the effective theory are the pseu-
doscalar mesons (π,K, η8, η0) that live in the coset space
U(3)R×U(3)L/U(3)V = U(3). They are most conveniently
collected in a unitary matrix U(x) ∈ U(3) with a phase
given by

detU(x) = eiψ(x). (3)

The fieldψ describes the singlet field η0 and is the extension
from the standard framework where the effective field is
an element of SU(3). Under chiral rotations, the effective
field U(x) transforms as

U ′(x) = R(x)U(x)L†(x), (4)

so that its phase changes by

ψ′(x) = ψ(x) − i ln detR+ ln detL. (5)

Hence, the combination ψ̄ = ψ + θ remains invariant in
the effective theory under chiral U(3)R ×U(3)L rotations.
The covariant derivative of U involves left- and right-
handed sources,

DµU = ∂µU − irµU + iUlµ, (6)

with rµ = vµ + aµ and lµ = vµ − aµ. In terms of these
building blocks the WZW effective action is given by [3,4]

SWZW(U, v, a) = SWZW(U) + SWZW(v, a)

− iNc
48π2

∫ 〈
Ul3U†r + 1

4UlU
†rUlU†r + iUdllU†r

+ idrUlU†r − iΣLlU†rUl +ΣLU
†drUl −Σ2

LU
†rUl

+ ΣLldl +ΣLdll − iΣLl3 + 1
2ΣLlΣLl − iΣ3

Ll
〉

− (R ↔ L), (7)

where ΣL = U†dU and we adopted the differential form
notation of [6],

v = dxµvµ, a = dxµaµ, r = v + a,

l = v − a, d = dxµ∂µ, (8)

with the Grassmann variables dxµ which yield the volume
element dxµdxνdxαdxβ = εµναβd4x. The brackets 〈. . .〉

denote the trace in flavor space and the operation (R ↔ L)
indicates the interchange of r with l as well as of U with
U†, so that, e.g., ΣL is replaced by ΣR = UdU†.

In order to extract the SU(3) version of the WZW term,
it is convenient to introduce the notation

U = e
i
3 ψ̄Ū , det Ū = e−iθ. (9)

As the field ψ̄ = ψ + θ is gauge invariant, Ū transforms
in the same manner as U under chiral rotations, and its
covariant derivative is defined as

DµŪ = ∂µU − i(vµ + āµ)U + iU(vµ − āµ),

āµ = aµ − 1
3 〈aµ〉 − 1

6∂µθ = aµ − 1
6Dµθ. (10)

In [6] it has been shown that the WZW term can be de-
composed as

SWZW(U, v, a) = SWZW(Ū , v, ā) +
∫
B, (11)

with

B = − Nc
144π2

× (
ψ̄
〈
iFr̄DŪDŪ† + iFl̄DŪ

†DŪ

+2Fr̄ŪFl̄Ū
† + 2F 2

r̄ + 2F 2
l̄

〉
(12)

+ 1
6 ψ̄ 〈Fr̄ − Fl̄〉 〈Fr̄ − Fl̄〉 − iDθ

〈
Fr̄DŪŪ

† − Fl̄Ū
†DŪ

〉)
and

Fr̄ = dr̄ − ir̄2, Fl̄ = dl̄ − il̄2. (13)

The quantities r̄, l̄ are the QCD renormalization group
invariant parts of the left- and right-handed gauge fields
r = r̄+ 1

6Dθ, l = l̄− 1
6DθwithDθ = dθ+2 〈a〉. The left- and

right-hand side of (11) actually differ by two contact terms
which transform in a non-trivial manner both under chiral
rotations and under the QCD renormalization group. In
order to obtain a renormalization group invariant anomaly,
one must remove these contact terms [6]. Since these two
terms involve the singlet axial vector field 〈aµ〉 and the
derivative of the QCD vacuum angle, ∂µθ, they are not
relevant for the present work and can safely be neglected.

The first term in (11) contains the WZW term for the
SU(3) effective theory:∫

d4xLWZW(Ū , v, ā) ≡ SWZW(Ū , v, ā), (14)

while the second one is gauge invariant and does not con-
tribute to the anomaly. It is straightforward to show that
the expression B can be absorbed by contact terms of un-
natural parity at fourth chiral order:

d4xL̃p4
= iL̃1ψ̄

〈
FrDUDU

† + FlDU
†DU

〉
+ 2L̃2ψ̄

〈
FrUFlU

†〉
+2L̃3ψ̄

〈
F 2
r + F 2

l

〉
+ iL̃4Dθ

〈
FrDUU

† − FlU
†DU

〉
+2L̃5ψ̄ (〈Fr〉 〈Fr〉 + 〈Fl〉 〈Fl〉) + 2L̃6ψ̄ 〈Fr〉 〈Fl〉 , (15)
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where we employed the notation

Fr = dr − ir2, Fl = dl − il2. (16)

The vacuum angle θ has served its purpose and will be
omitted for the rest of this section. Since we are interested
in radiative decays, we will furthermore set the external
vector and axial-vector fields

r = l = v = −eQ A, (17)

with A being the photon field. The anomalous Lagrangian
LWZW in (14) relevant for the two-photon decays at the
one-loop level reduces then to

SWZW(Û , v)

=
∫

d4xLWZW(Û , v)

= − iNc
48π2

∫
d4x
〈
Σ̂LÛ

†dvÛv + Σ̂Lvdv + Σ̂Ldvv − iΣ̂3
Lv
〉

−(R ↔ L), (18)

with U = e
i
3ψÛ and Σ̂L = Û†dÛ .

The quark charge matrix Q of the u- d- and s-quarks
has usually been assumed to be independent of the number
of colors with Q = 1

3diag(2,−1,−1). However, the cancel-
lation of triangle anomalies requiresQ to depend onNc [2]:

Q = diag (Qu, Qd, Qs)

=
1
2
diag

(
1
Nc

+ 1,
1
Nc

− 1,
1
Nc

− 1
)

= Q̂+
(

1 − Nc
3

)
1

2Nc
1, (19)

with Q̂ = 1
3diag(2,−1,−1) being the conventional charge

matrix, while the second term is proportional to the baryon
number and gives rise to the Goldstone–Wilczek term. The
anomalous Lagrangian of (18) decomposes into the con-
ventional WZW Lagrangian of the SU(3) theory with the
charge matrix Q̂ and a Goldstone–Wilczek term which van-
ishes for Nc = 3

SWZW(Û , v) = SWZW(Û , v̂) +
(

1 − Nc
3

)
SGW(Û , v̂),

(20)
with v̂ = −eQ̂A and

SWZW(Û , v̂) =
Nce

48π2

∫ 〈
(Σ̂3

L − Σ̂3
R) Q̂

〉
A

− iNce2

48π2

∫ 〈
2(Σ̂L − Σ̂R) Q̂2

+Q̂(Σ̂LÛ†Q̂Û − Σ̂RÛQ̂Û
†)
〉

dAA, (21)

SGW(Û , v̂) (22)

=
e

48π2

∫ 〈
Σ̂3
L

〉
A− ie2

16π2

∫ 〈
(Σ̂L − Σ̂R) Q̂

〉
dAA.

It has been shown in [2] that the Nc dependent part of the
Goldstone–Wilczek term cancels both the π–2γ and the η–
2γ vertices of the WZW Lagrangian, yielding at tree level
a decay width for these decays which does not depend on
Nc, if one neglects η–η′ mixing. However, at the one-loop
level other vertices involving kaons will contribute to the
decays. One can easily show that, e.g., the vertex with two
photons and π+, π−, π0 of the WZW term is canceled by
the Nc dependent piece of the Goldstone–Wilczek term, in
agreement with the observation that the number of colors
does not appear in the effective theory for two flavors [2].
The vertices involving kaons, on the other hand, do not
cancel and an Nc dependent piece remains for the vertices.
Consider as an example the vertex with two photons and
π0,K+,K− that contributes to the decay π0 → γγ. The
WZW term yields the vertex (neglecting mixing of the π0

with the η–η′ system)

−5Nce2

72π2 K+K−dπ0dAA, (23)

whereas the Nc dependent piece of the Goldstone–Wilczek
term leads to

Nce
2

36π2 K
+K−dπ0dAA. (24)

Clearly, both terms do not compensate and a dependence
on Nc remains in the final expression for the vertex. It is
therefore of interest to study the Nc dependence of the
two-photon decays at the one-loop level.

3 Radiative decays at one-loop order

In the framework of largeNc ChPT the expansion in powers
of momenta and light quark masses is combined with the
1/Nc expansion by ordering the series according to

p = O(
√
δ), mq = O(δ), 1/Nc = O(δ). (25)

In this bookkeeping, the WZW term SWZW is of order
O(δ), whereas the one-loop diagrams of the decays involve
the ratio mq/f

2 with f ∼ O(
√
δ) being the pseudoscalar

decay constant in the chiral limit and are thus of order
O(δ3), i.e. next-to-next-to-leading order.

Our starting point is the WZW effective action of the
U(3) theory

SWZW(U, v) =
∫

d4xLWZW(U, v)

= − iNc
48π2

∫
d4x

〈
ΣLU

†dvUv +ΣLvdv +ΣLdvv − iΣ3
Lv
〉

−(R ↔ L). (26)

We expand the quark charge matrix Q in powers of 1/Nc

Q =
1
2
diag

(
1
Nc

+ 1,
1
Nc

− 1,
1
Nc

− 1
)
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=
1
2
diag(1,−1,−1) +

1
2Nc

1

≡ Q(0) +Q(1), (27)

where the superscript denotes the order in the combined
large Nc and chiral counting scheme, i.e. Q(0) (Q(1)) is of
order O(1) (O(δ)). With U = exp(iφ), one obtains for the
three decays from SWZW the tree level contributions

d4xLWZW =
Nce

2

8π2

〈
dφ Q2〉AdA (28)

= −Nce
2

8π2

〈
φ
[
(Q(0))2 + 2Q(0)Q(1) + (Q(1))2

]〉
dAdA,

since Q(0), Q(1) commute with the diagonal entries of φ –
φ3, φ8, φ0. The terms on the right-hand side of (28) con-
tribute at orders δ, δ2 and δ3, respectively, if one disregards
theNc dependence of φ in which a factor 1/f = O(1/

√
Nc)

has been absorbed. Hence, within large Nc ChPT the φ3

and φ8 decay amplitudes start at order O(δ2), whereas the
decay amplitude for the singlet field φ0 is of order δ.

At fourth chiral order the unnatural parity Lagrangian
consists of more terms, which are gauge invariant, see (15),

L̃eff = LWZW + L̃p4 , (29)

with

d4xL̃p4
= 2Ṽ2(ψ̄)

〈
FrUFlU

†〉+ 2Ṽ3(ψ̄)
〈
F 2
r + F 2

l

〉
(30)

+ 2Ṽ5(ψ̄) (〈Fr〉 〈Fr〉 + 〈Fl〉 〈Fl〉) + 2Ṽ6(ψ̄) 〈Fr〉 〈Fl〉 + . . . ,

where we have presented only the contact terms which
contribute to the decays at the order we are working.

The potentials Ṽi are odd functions in ψ̄, so that the
leading contribution in the 1/Nc expansion is linear in ψ̄.
The Lagrangian L̃p4 can be expanded in powers of 1/Nc:

L̃p4 = L̃(2)
p4 + L̃(3)

p4 + . . . , (31)

where the superscript denotes the order in the δ expan-
sion with

d4xL̃(2)
p4 = 2L̃2ψ̄

〈
FrUFlU

†〉+ 2L̃3ψ̄
〈
F 2
r + F 2

l

〉
(32)

and

d4xL̃(3)
p4 = 2L̃5ψ̄ (〈Fr〉 〈Fr〉 + 〈Fl〉 〈Fl〉) + 2L̃6ψ̄ 〈Fr〉 〈Fl〉 .

(33)
The contributions from L̃(2)

p4 and L̃(3)
p4 are of order O(p4)

and O
(

1
Nc
p4
)
, respectively. Setting Fr = Fl = −eQdA,

we obtain for L̃(2)
p4

d4xL̃(2)
p4

= 2e2
[
L̃2 + 2L̃3

]
ψ̄

×
〈
(Q(0))2 + 2Q(0)Q(1) + (Q(1))2

〉
dAdA

= e2k1

(
3
4

− 1
2Nc

)
ψ̄ dAdA, (34)

where k1 = 2(L̃2 + 2L̃3) and the last term proportional to
(Q(1))2 has been omitted, since it is of order O(δ4) and
thus beyond our working precision. In a similar way, the
terms from L̃(3)

p4 reduce to

d4xL̃(3)
p4 = e2k2ψ̄

〈
Q(0)

〉〈
Q(0)

〉
dAdA, (35)

with k2 = 2(2L̃5 + L̃6).
From the renormalization group invariance of the ef-

fective Lagrangian it follows that k1 and k2 transform as
(cf. Appendix A for details)

kren
1 = ZAk1 − Nc(ZA − 1)

24π2 ,

kren
2 = ZAk2, (36)

where ZA is the multiplicative renormalization constant of
the singlet axial currentA0

µ = 1
2 q̄γµγ5qwhich transforms as

(A0
µ)

ren = ZAA
0
µ under changes in the QCD running scale.

At sixth chiral order the relevant terms for the de-
cays read

d4xL̃χ = iW̃1(ψ̄)
〈
Uχ†F 2

r + χ†UF 2
l

〉
+ iW̃2(ψ̄)

〈
χ†FrUFl + Uχ†UFlU†Fr

〉
+ iW̃3(ψ̄)

〈
Uχ†〉 〈F 2

r + F 2
l

〉
+ iW̃4(ψ̄)

〈
Uχ†〉 〈U†FrUFl

〉
+ iW̃5(ψ̄) 〈Fr + Fl〉

〈
[FrU + UFl]χ†〉+ h.c. (37)

The quark mass matrix M = diag(mu,md,ms) enters in
the combination χ = 2BM with B = − 〈0|q̄q|0〉 /f2 being
the order parameter of the spontaneous symmetry viola-
tion. Expanding in powers of 1/Nc one obtains

L̃χ = L̃(2)
χ + L̃(3)

χ , (38)

with the contributions L̃(2)
χ at O(Ncp6)

d4xL̃(2)
χ = iw̃(0)

1

〈[
Uχ† − χU†]F 2

r +
[
χ†U − U†χ

]
F 2
l

〉
+ iw̃(0)

2

〈[
χ† − U†χU†]FrUFl + [Uχ†U − χ

]
FlU

†Fr
〉

(39)

and L̃(3)
χ at order O(p6)

d4xL̃(3)
χ

= −w̃(1)
1 ψ̄

〈[
Uχ† + χU†]F 2

r +
[
χ†U + U†χ

]
F 2
l

〉
− w̃

(1)
2 ψ̄

〈[
χ† + U†χU†]FrUFl + [Uχ†U + χ

]
FlU

†Fr
〉

+ iw̃(0)
3

〈
Uχ† − χU†〉 〈F 2

r + F 2
l

〉
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+ iw̃(0)
4

〈
Uχ† − χU†〉 〈U†FrUFl

〉
(40)

+ iw̃(0)
5 〈Fr + Fl〉

〈
FrUχ

† − U†Frχ+ UFlχ
† − FlU

†χ
〉
,

where the potentials W̃i have been expanded according to
W̃i = w̃

(0)
i + iw̃(1)

i ψ̄ + O(ψ̄2).
The explicitly symmetry breaking terms reduce to

the structures

d4xL̃(2)
χ = k3e

2
〈
φχ
[
(Q(0))2 + 2Q(0)Q(1)

]〉
dAdA, (41)

with k3 = −4(w̃(0)
1 + w̃

(0)
2 ) and

d4xL̃(3)
χ = e2

(
k4ψ̄

〈
χ(Q(0))2

〉
+ k5 〈φχ〉

〈
(Q(0))2

〉
+ k6

〈
Q(0)

〉〈
φχQ(0)

〉)
dAdA, (42)

with k4 = −4(w̃(1)
1 + w̃

(1)
2 ), k5 = −2(2w̃(0)

3 + w̃
(0)
4 ), k6 =

−8w̃(0)
5 , respectively. The scaling law for the parameter k4

is given by (cf. Appendix A)

kren
4 = ZAk4 +

1
3

[ZA − 1] k3, (43)

while the remaining parameters k3, k5 and k6 remain
the same.

Having discussed the tree diagram contributions to the
decays, we now turn to the calculation of the loops at order
δ3. After expanding the WZW Lagrangian in the meson
fields φ the contributing pieces at one-loop order read

d4xLWZW

= −Nce
2

48π2

(〈
dφ[φ,

[
φ,Q2]]〉− 〈dφ[φ,Q][φ,Q]〉)AdA

− iNce
24π2 〈dφdφdφQ〉A+ . . . (44)

The mesons inside the loops do not undergo mixing, as
φ3, φ8 and φ0 loops do not contribute. The first two terms
in (44) contribute via tadpoles, whereas the last one repre-
sents a vertex of the unitarity correction, corresponding to
Fig. 1b. As the diagonal components of φ commute withQ,
tadpoles with φ3, φ8 and φ0 do not contribute, and since
the photon couples only to charged mesons, the unitarity
corrections arise due to charged meson loops.

At order O(δ3) only the Q(0) piece in (44) contributes.
From (Q(0))2 = 1

41 it follows then that the first term van-
ishes and the tadpoles are entirely due to the second term.
Performing the loop integration, one obtains for the decays
the tadpole contributions

Nce
2

24π2f2

∑
i=3,8,0

(
diπ∆π + diK∆K

)
φidAdA, (45)

with the tadpole given in dimensional regularization by

∆φ =
∫

ddl
(2π)d

i
l2 −m2

φ + iε
= m2

φ

[
2L+

1
16π2 ln

m2
φ

µ2

]
,

(46)

a b

Fig. 1a,b. One-loop diagrams contributing to φ → γγ. In b the
crossed diagram is not shown

where L contains the pole at d = 4,

L =
µd−4

16π2

(
1

d− 4
− 1

2
(ln 4π + Γ ′(1) + 1)

)
, (47)

and µ is the regularization scale. The coefficients diφ read

d3
π = 0, d8

π = −
√

2
3
, d0

π = − 2√
3
;

(48)

d3
K = − 1√

2
, d8

K =
1√
6
, d0

K = − 2√
3
.

Evaluating the unitarity corrections at order O(δ3) for on-
shell photons and replacing Q in (44) by Q(0), since the
contribution from Q(1) is beyond the order we are work-
ing, one obtains exactly the same contribution as for the
tadpoles but with opposite sign. Hence, the one-loop cor-
rections to the decays at order O(δ3) compensate each
other and the first non-vanishing non-analytic piece will
show up at order O(δ4). This is also in agreement with
previous calculations in conventional ChPT, in which the
chiral logarithms were compensated completely by wave-
function renormalization and replacing f by the physical
decay constant Fφ in the tree level expression [10,11]. How-
ever, within largeNc ChPT the φ3 and φ8 decay amplitudes
start at order O(δ2), so that the leading non-analytic cor-
rections to the physical decay constant and wavefunction
renormalization will contribute at order O(δ4) and do not
affect the amplitude up to order O(δ3). Any divergences
from the loop diagrams discussed above could then only
be renormalized by counterterms of the p6 Lagrangian of
unnatural parity. This would clearly be in contradiction to
previous results [12,13].

So far, the φ8 amplitude does not contain an explicit
Nc dependence due to the WZW term, but both the φ8

and φ0 fields undergo mixing which results in the mass
eigenstates η and η′. Here, we work in the isospin limit of
equal up- and down-quark masses, m̂ = mu = md, so that
the φ3 field decouples from the η–η′ system. In the next
section, we will give an estimate on isospin breaking effects
due to different quark masses mu �= md.

In order to describe η–η′ mixing up to one-loop or-
der, one must take into account the following terms of the
effective Lagrangian:

Leff = L(0) + L(1) + L(2) + . . . , (49)
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which reads at lowest order δ0

L(0) =
f2

4
〈
DµU

†DµU
〉
+
f2

4
〈
χU† + Uχ†〉− 1

2
τψ̄2. (50)

Thenext-to-leading orderLagrangianL(1) = O(δ) contains
the terms

L(1) = L5
〈
DµU

†DµU(χ†U + U†χ)
〉

+ L8
〈
χ†Uχ†U + U†χU†χ

〉
(51)

+
f2

12
Λ1DµψD

µψ + i
f2

12
Λ2ψ̄

〈
χ†U − U†χ

〉
,

and L(2) is given by

L(2) = L4
〈
DµU

†DµU
〉 〈
χ†U + U†χ

〉
+ L6

〈
χ†U + U†χ

〉2
+ L7

〈
χ†U − U†χ

〉2
+ iL18Dµψ

〈
DµU†χ−DµUχ†〉

+ iL25ψ̄
〈
U†χU†χ− χ†Uχ†U

〉
+ O(Ncp6). (52)

The terms η2
0
〈
DµU

†DµU
〉

and η2
0
〈
χU† + Uχ†〉 have been

omitted in L(2), since the pertinent unknown coupling con-
stants represent OZI violating corrections. Moreover, as in-
dicated in the last equation, counterterms of order O(Ncp6)
with new unknown coupling constants will contribute at
order δ2. We will neglect these contributions throughout,
assuming that they are of small size anddonot alter our con-
clusions.

The fields φ8 and φ0 are related to the mass eigenstates
η and η′ via

φ8 =
√

2
F 8
η

[
cosϑ(1) − sinϑ(0)A(1)

]
η

+
√

2
F 8
η

[
sinϑ(1) + cosϑ(0)A(1)

]
η′

φ0 =
√

2√
3F 0

η′

[
cosϑ(1)A(2) − sinϑ(2)B

]
η,

+
√

2√
3F 0

η′

[
sinϑ(1)A(2) + cosϑ(2)B

]
η′. (53)

The decay constants F 8
η and F 0

η′ are defined by

〈
0|q̄γµγ5λ

8q|η〉 = i
√

2pµF 8
η ,〈

0|q̄γµγ5λ
0q|η′〉 = i

√
2pµF 0

η′ , (54)

with the normalization
〈
λaλb

〉
= δab, while the angles ϑ(i)

correspond to the mixing angle up to order O(δi) which
arises in the diagonalization of the φ8–φ0 mass matrix

sin 2ϑ(0) = −4
√

2
3

m2
K −m2

π

m2
η′ −m2

η

,

sin 2ϑ(1) = sin 2ϑ(0)
(

1 + Λ2√
1 + Λ1

+
8
F 2
π

[
2L(r)

8 − L
(r)
5

]
(m2

K −m2
π) − 24

F 4
π

L
(r)
5 τ

)
,

sin 2ϑ(2) =
2
√

2

3
[
m2
η′ −m2

η

]

×
(

2
[ ◦
m2
π − ◦

m2
K

] 1 + Λ2√
1 + Λ1

+
32
F 2
π

[
m2
π −m2

K

]
m2
K

2L(r)
8 − 3L25√
1 + Λ1

+
16
F 2
π

[
m2
π −m2

K

] [
2m2

K +m2
π

]
(2L(r)

6 + 2L7 − L
(r)
4 )

− 24
F 4
π

[
m2
π −m2

K

]
(2L(r)

5 + 3L(r)
18 )τ

(
1 − 5

4
Λ1

)

+
64
F 6
π

[
m2
π −m2

K

] [
11m2

K +m2
π

]
L

(r)2
5 τ

− 16
F 2
π

[
m2
π −m2

K

] [
7m2

K +m2
π

]
L

(r)
5

(
1 − 1

4
Λ1

)

+
8
F 2
π

[
m2
π −m2

K

] [
5m2

K +m2
π

]

×
(

2L(r)
5

(
1 − 1

3
Λ2

)
− L

(r)
18

)

− 3
2F 2

π

m2
π∆

(r)
π +

1
F 2
π

m2
K∆

(r)
K

− 1
3F 2

π

∆(r)
η

(
m2
π

[
5
2 cos2 ϑ(0) + 1√

2
sin 2ϑ(0) + 2 sin2 ϑ(0)

]

− m2
K

[
4 cos2 ϑ(0) + 2

√
2 sin 2ϑ(0) + 2 sin2 ϑ(0)

])

− 1
3F 2

π

∆
(r)
η′

(
m2
π

[
5
2 sin2 ϑ(0) − 1√

2
sin 2ϑ(0) + 2 cos2 ϑ(0)

]

− m2
K

[
4 sin2 ϑ(0) − 2

√
2 sin 2ϑ(0) + 2 cos2 ϑ(0)

])
+O(Ncp6)

)
, (55)

where Fπ ≈ 93 MeV is the pion decay constant defined
in a similar way as in (54), and mη,mη′ are the diagonal
entries of the η–η′ mass matrix. Furthermore, L(r)

i and
∆

(r)
φ = m2

φ/(16π2) ln(m2
φ/µ

2) are the finite parts of the
LECs and the loops, respectively, after renormalization.
It is straightforward to verify that the angles ϑ(i) do not
depend on the regularization scale of the effective theory.

The quantities
◦
mπ and

◦
mK denote the pion and kaon

masses at leading order

◦
m2
π = 2Bm̂

= m2
π

(
1 − 8

F 2
π

m2
π

[
2L(r)

8 − L
(r)
5

]
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− 8
F 2
π

(2m2
K +m2

π)
[
2L(r)

6 − L
(r)
4

]
− 1

2F 2
π

∆(r)
π

+
1

6F 2
π

[
cos2 ϑ(0) + 2 sin2 ϑ(0)

]
∆(r)
η

+
1

6F 2
π

[
sin2 ϑ(0) + 2 cos2 ϑ(0)

]
∆

(r)
η′

)
,

◦
m2
K = B(m̂+ms)

= m2
K

(
1 − 8

F 2
π

m2
K

[
2L(r)

8 − L
(r)
5

]
(56)

− 8
F 2
π

(2m2
K +m2

π)
[
2L(r)

6 − L
(r)
4

]
− 1

3F 2
π

cos 2ϑ(0)∆(r)
η

)

+
1

12F 2
π

[
4m2

K cos2 ϑ(0) − (3m2
η′ +m2

π) sin2 ϑ(0)
]
∆

(r)
η′ .

The expressions A(i) and B read

A(1) =
8
√

2
3F 2

π

L
(r)
5

[
m2
K −m2

π

]
,

A(2) =
4
√

2
3F 2

π

[
m2
K −m2

π

]

×
(

2L(r)
5 + 3L(r)

18

(1 + Λ1)1/4
+

8
3F 2

π

L
(r)2
5

[−m2
K + 13m2

π

]

− 32
F 2
π

L
(r)
5 L

(r)
8

[
m2
K +m2

π

])
,

B = 1 +
4

3F 2
π

[
2m2

K +m2
π

]

×
(

3L(r)
4 − L

(r)
5 +

2L(r)
5 + 3L(r)

18√
1 + Λ1

− 3L(r)
4 + L

(r)
5 + 3L(r)

18

1 + Λ1

)

+
64

9F 4
π

L
(r)2
5

[
3m4

K − 4m2
πm

2
K + 3m4

π

]
. (57)

For the φ8 decay we have only kept the pieces up to next-to-
leading order, since the terms beyond that order contribute
at O(δ4). In the case of the φ0 decay, on the other hand,
one must keep also the contributions at next-to-next-to-
leading order. The values of the couplings Λ1, Λ2, L

(r)
18 and

L25 are not known and depend on the running scale of
QCD. As they represent OZI violating corrections, we will
omit them, but, strictly speaking, we cannot expect that
all neglected terms vanish at the same scale. Furthermore,
the parameter τ is related to the mass of the η′ in the chiral
limit which was estimated in [9] to be about 850 MeV. This
translates into a value of τ ≈ 1 × 10−3 GeV4.

Including the mixing from (55) we obtain the ampli-
tudes

e2

[
Bπ
Fπ

π0 +

(
Bη
F 8
η

[
cosϑ(1) − sinϑ(0)A(1)

]

+
Bη′

F 0
η′

[
cosϑ(1)A(2) − sinϑ(2)B

])
η

+

(
Bη
F 8
η

[
sinϑ(1) + cosϑ(0)A(1)

]
(58)

+
Bη′

F 0
η′

[
sinϑ(1)A(2) + cosϑ(2)B

])
η′
]

dAdA,

where π0 is related to the φ3 field via

π0 =
f√
2Zπ

φ3 =
Fπ√

2
φ3, (59)

with the pion Z-factor

√
Zπ = 1 − 4

f2m
2
πL

(r)
5 (60)

and the decay constant

Fπ = f

(
1 +

4
f2m

2
πL

(r)
5

)
(61)

to the order we are working. The coefficients Bφ read

Bπ = − Nc

4
√

2π2

〈
λ3Q

2〉
+

√
2k3

〈
λ3χ

[
(Q(0))2 + 2Q(0)Q(1)

]〉
+

√
2k5 〈λ3χ〉

〈
(Q(0))2

〉
+

√
2k6

〈
Q(0)

〉〈
λ3χQ

(0)
〉
,

Bη = − Nc

4
√

2π2

〈
λ8Q

2〉
+

√
2k3

〈
λ8χ

[
(Q(0))2 + 2Q(0)Q(1)

]〉
+

√
2k5 〈λ8χ〉

〈
(Q(0))2

〉
+

√
2k6

〈
Q(0)

〉〈
λ8χQ

(0)
〉
,

Bη′ = − Nc

4
√

6π2

〈
Q2〉

+
√

6k1

〈
(Q(0))2 + 2Q(0)Q(1)

〉
+

√
6k2

〈
Q(0)

〉〈
Q(0)

〉

+

√
2
3
k3

〈
χ
[
(Q(0))2 + 2Q(0)Q(1)

]〉
+

√
6k4

〈
χ(Q(0))2

〉

+

√
2
3
k5 〈χ〉

〈
(Q(0))2

〉
+

√
2
3
k6

〈
Q(0)

〉〈
χQ(0)

〉
. (62)

Due to the Nc dependence of the quark charge matrix Q
the expressions Bπ and Bη start at order δ2, whereas Bη′

contains a piece of order O(δ). Substituting these relations
into (58) yields the decay widths

Γπ0→γγ = α2πm3
π0

∣∣∣∣BπFπ
∣∣∣∣
2

,
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Γη→γγ = α2πm3
η

∣∣∣∣∣BηF 8
η

[
cosϑ(1) − sinϑ(0)A(1)

]

+
Bη′

F 0
η′

[
cosϑ(1)A(2) − sinϑ(2)B

]∣∣∣∣∣
2

,

Γη′→γγ = α2πm3
η′

∣∣∣∣∣BηF 8
η

[
sinϑ(1) + cosϑ(0)A(1)

]

+
Bη′

F 0
η′

[
sinϑ(1)A(2) + cosϑ(2)B

]∣∣∣∣∣
2

, (63)

with α = e2/4π. In the δ expansion the leading order
contribution to the decay width of the η is given due to
mixing by the leading contribution inBη′ and is comparable
in size with the Bη portion. The numerical values will be
discussed in detail in the next section.

4 Numerical analysis

Equations (55) and (57) are utilized to obtain values for the
mixing angles ϑ(i) and the expressions A(i),B, respectively.
For the LECs L(r)

4,5,6,8, L7, we take values which follow from
matching the U(3) theory to the SU(3) framework by in-
tegrating out the singlet field [6, 19] at the regularization
scale µ = 1 GeV, L(r)

4 (µ) = −0.5, L(r)
5 (µ) = 1.0, L(r)

6 (µ) =
−0.3, L7 = −0.3, L(r)

8 (µ) = 0.7 (all in units of 10−3). Note
that integrating out the singlet field only alters the LECs
L

(r)
6 , L7 andL(r)

8 , and their values in theU(3) framework are
within the phenomenologically determined error ranges of
the SU(3) LECs. Moderate variations of these LECs yield
small changes in the decay amplitudes with the largest
changes induced by variations in L7 roughly at the 10%
level. Our conclusions are therefore not altered, if slightly
different values for the LECs are employed. Using the ex-
perimental values for the pseudoscalar meson masses, we
obtain ϑ(0) = −21.8◦, ϑ(1) = −15.8◦, ϑ(2) = −19.8◦.

By employing (63), we can now fit the ratios Bπ/Fπ,
Bη/F

8
η , Bη′/F 0

η′ to the decay widths Γπ0→γγ , Γη→γγ ,
Γη′→γγ . The experimental values for the decay widths
are [20]

Γπ0→γγ = 7.74 ± 0.55eV,

Γη→γγ = 0.465 ± 0.045keV,

Γη′→γγ = 4.28 ± 0.34keV, (64)

and the fit to the central values yields

Bπ/Fπ = −0.133GeV−1,

Bη/F
8
η = −0.0522GeV−1,

Bη′/F 0
η′ = −0.192GeV−1. (65)

For the pion decay constant Fπ we employ the physical
value Fπ ≈ 93 MeV, while F 8

η can be extracted from a

one-loop calculation with F 8
η = 1.34Fπ [7]. It is consistent

to take the one-loop results for Fπ and F 8
η , since the differ-

ence with respect to the next-to-leading order expressions
shows up at δ4 in the decay amplitude and is, therefore,
beyond our working precision. The values for Bπ/Fπ and
Bη/F

8
η from the fit are close to the contributions from

the anomalous WZW term, BWZW
π /Fπ = −0.136 GeV−1,

BWZW
η /F 8

η = −0.0587 GeV−1, indicating that the portions
from the counterterms of unnatural parity are small. Omit-
ting higher orders beyond δ3, they contribute with a rela-
tive strength of about 2% to Bπ and 10% to Bη. In order
to get an estimate for F 0

η′ , it is thus justified to assume
that the counterterm combination in Bη′ is small as well.
Of course, both the counterterms and F 0

η′ depend on the
renormalization scale µQCD, but we will assume that for a
certain range of µQCD the counterterm contributions are
negligible. For such a µQCD, the ratio BWZW

η′ /F 0
η′ is then

reproduced by setting F 0
η′ ≈ 1.16Fπ, a value slightly larger

than in previous calculations [10,11].
In particular, we would like to investigate whether a

clear statement can be given on the number of colors by
utilizing the 1/Nc expansions of the decay amplitudes. The
cancellation of Witten’s global SU(2)L anomaly requires
Nc to be odd [22]. The standard model withNc = 1 is with-
out strong interactions. We will therefore restrict ourselves
to a comparison of the numerical results for Nc = 3 and
Nc = 5. Setting all non-anomalous contact terms of un-
natural parity to zero, the decay width for the η in a world
with Nc = 5 reads ΓNc=5

η→γγ = 1.002 keV, to be compared
with the decay width in the real world with three colors,
ΓNc=3
η→γγ = 0.511keV.For the η′ weobtainΓNc=3

η′→γγ = 4.21 keV
and ΓNc=5

η′→γγ = 12.8keV. The experimental values for the η
and η′ decays clearly rule out Nc = 5 and varying the val-
ues for the omitted coupling constants of the counterterms
within realistic ranges does not alter this conclusion.

Finally, we would like to give an estimate on the Nc
dependence of the π0 decay width due to different up- and
down-quark masses. In the case of different up- and down-
quark masses, the φ3 field undergoes mixing with both
the φ8 and φ0 field. In order to get an estimate, we will
restrict ourselves to the mixing at leading order in the δ
expansion. The fields φ3, φ8 and φ0 are then related to the
mass eigenstates via

φ3 =
√

2
Fπ

(
π0 − εη − ε′η′) , (66)

φ8 =
√

2
F 8
η

(
cosϑ(0)(η + επ0) + sinϑ(0)(η′ + ε′π0)

)
,

φ0 =
√

2√
3F 0

η′

(
− sinϑ(0)(η + επ0)

+ cosϑ(0)(η′ + ε′π0)
)
,

with the mixing parameters

ε0 =
√

3
4
md −mu

ms − m̂
,



B. Borasoy: The number of colors in the decays π0, η, η′ → γγ 325

ε = ε0
cosϑ(0) − √

2 sinϑ(0)

1 + 1√
2

tanϑ(0)
,

ε′ = ε0
sinϑ(0) +

√
2 cosϑ(0)

1 − 1√
2
ctgϑ(0)

. (67)

The parameter ε0 can be expressed in terms of physical
meson masses by applying Dashen’s theorem [14], which
implies the identity of the pion and kaon electromagnetic
mass shifts up to O(e2p2):

ε0 =
m2
K0 −m2

K± +m2
π± −m2

π0√
3(m2

η −m2
π)

. (68)

There have been estimates in the literature that Dashen’s
theorem is significantly violated at higher orders due to
chiral symmetry breaking effects [15–17]. On the other
hand, a recent non-perturbative approach to the hadronic
decays of η and η′ indicated that higher order corrections
to this low-energy theorem may be small [18]. In any case,
the isospin violating effects in the decay widths constitute
a small correction, so that it is safe to employ Dashen’s
theorem in the present work.

This time thefit to the central experimental values yields

Bπ/Fπ = −0.134GeV−1,

Bη/F
8
η = −0.0598GeV−1,

Bη′/F 0
η′ = −0.208GeV−1, (69)

and setting F 0
η′ = 1.07Fπ in the ratio BWZW

η′ /F 0
η′ repro-

duces the fitted value.
It should be emphasized that we fitted our results to

the current world average value for Γπ0→γγ = 7.74 ±
0.55eV [20]. On the other hand, it is possible to estimate
in a model dependent way the size of the counterterm con-
tributions. In [21], e.g., the values of the counterterm con-
tributions to the π0 decay have been estimated by means
of a QCD sum rule for the general three-point function in-
volving the pseudoscalar density and two vector currents.
Within that approach the authors find a slightly enhanced
width of Γπ0→γγ = 8.10 ± 0.08eV.

A comparison of the numerical results for Nc = 3 and
Nc = 5 and setting all non-anomalous contact terms of un-
natural parity to zero yields ΓNc=3

π0→γγ = 8.00eV, ΓNc=5
π0→γγ =

8.18eV for the pion decay, ΓNc=3
η′→γγ = 0.456keV, ΓNc=5

η′→γγ =
0.920keV for the η and ΓNc=3

η′→γγ = 13.7keV, ΓNc=5
η′→γγ =

4.28keV for the η′. Again, Nc = 5 is ruled out by the
η and η′ decays, but no rigorous statement can be made
for the π0, although the value for Nc = 3 is in better
agreement with the current world average.

5 Conclusions

In the present work, we investigated the two-photon de-
cays of π0, η and η′ in the combined 1/Nc and chiral expan-
sions.The cancellation of triangle anomalies in the standard

model requires the quark charges to depend onNc. We have
shown that the WZW term of the U(3) effective theory de-
composes into the conventional anomalous SU(3) WZW
Lagrangian, a Goldstone–Wilczek term and counterterms
of unnatural parity which involve the singlet field η0. The
independence of the π0 and η decay amplitudes on Nc,
which was shown in [2] to occur at tree level due to partial
cancellations of the WZW term with a Goldstone–Wilczek
term, persists at one-loop order, although the vertices of
the pertinent loop graphs do exhibit an Nc dependence.

We performed a one-loop calculation including coun-
terterms up to next-to-next-to-leading order in large Nc
ChPT in which η–η′ mixing has also been taken into ac-
count up to one-loop order. Within the bookkeeping of
large Nc ChPT, the leading contribution to the η decay
arises from mixing with the η′.

From a fit to the experimental decay widths and under
the assumption that higher orders beyond our working
precision can be neglected, it follows that contributions
from the counterterms are small. Since the cancellation of
Witten’s global SU(2)L anomaly requires Nc to be odd
and a world with Nc = 1 has no strong interactions, we
compare the cases Nc = 3 and Nc = 5. The numerical
results of the η and η′ decay widths for Nc = 3 are close
to the experimental values and clearly rule out the case
Nc = 5. We have furthermore given an estimate on the
Nc dependence of the pion decay due to different up- and
down-quark masses by taking π0–η–η′ mixing at leading
order into account. The Nc dependence of the π0 decay is
smaller than the experimental uncertainty and is therefore
not suited to extract the number of colors. We conclude
that both the η and the η′ decay show clear evidence that
we live in a world with three colors.

It has been pointed out in [2] that at tree level the
process η → π+π−γ is proportional to N2

c and should
replace the textbook process π0 → γγ lending support to
Nc = 3. It will be thus of interest to investigate the decays
η → π+π−γ and η′ → π+π−γ within the framework of
large Nc ChPT [23].

Acknowledgements. The author is grateful to Edisher Lipartia
and Robin Nißler for useful discussions.

A Scaling behavior of the coupling constants

In this appendix, we derive the scaling behavior of the cou-
pling constants which contribute to the decays. The trans-
formation properties of the constants L̃2,3 have already
been given in [6] and we merely quote the result here. The
quantities L̃2 and L̃3 are renormalized according to

L̃ren
2 = ZAL̃2 − κ, L̃ren

3 = ZAL̃3 − κ, (A.1)

with

κ =
Nc(ZA − 1)

144π2 . (A.2)

Since the singlet field ψ̄ scales as ψ̄ren = Z−1
A ψ̄, the scaling

behavior of L̃ren
2,3 ensures that the Lagrangian LWZW +
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L̃(2)
p4 remains invariant to order δ2 under changes of the

QCD running scale. In order to study the transformation
properties of L̃5,6 we rewrite L̃(3)

p4 :

L̃(3)
p4 = 2L̃5ψ̄ (〈Fr〉 〈Fr〉 + 〈Fl〉 〈Fl〉) + 2L̃6ψ̄ 〈Fr〉 〈Fl〉

= 2ψ̄
[
2L̃5 + L̃6

]
〈dv〉 〈dv〉

+2ψ̄
[
2L̃5 − L̃6

]
〈da〉 〈da〉 . (A.3)

This yields the transformation properties

(2L̃5 + L̃6)ren = ZA(2L̃5 + L̃6),

(2L̃5 − L̃6)ren = Z3
A(2L̃5 − L̃6) − Nc(Z3

A − 1)
432π2 , (A.4)

so that the Lagrangian LWZW + L̃(2)
p4 + L̃(3)

p4 remains renor-
malization group invariant.

On the other hand, the contact terms W̃1 and W̃2 in
the Lagrangian of sixth chiral order can be written as

iW̃1(ψ̄)e
i
3 ψ̄
〈
Ūχ†F 2

r̄ + χ†ŪF 2
l̄

〉
(A.5)

+ iW̃2(ψ̄)e
i
3 ψ̄
〈
χ†Fr̄ŪFl̄ + Ūχ†ŪFl̄Ū

†Fr̄
〉

+ h.c.+ . . .

The ellipsis in (A.5) denotes terms with more than one fla-
vor trace which involve contributions from other contact
terms and are irrelevant for the discussion of the scaling
behavior of W̃1 and W̃2. From (A.5) we obtain the trans-
formation properties

W̃1(x)ren = W̃1(ZAx)e
i
3 (ZA−1)x,

W̃2(x)ren = W̃2(ZAx)e
i
3 (ZA−1)x. (A.6)

Expanding the potentials W̃i in the singlet field ψ̄ yields
for the two leading expansion coefficients

(w̃(0)
i )ren = w̃

(0)
i , (A.7)

(w̃(1)
i )ren = ZAw̃

(1)
i +

1
3
(ZA − 1)w̃(0)

i , i = 1, 2.
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